# In Vitro Study of Endophytic Bacteria Isolated from Tomato Plant against *Fusarium oxysporum*

# Panisa Prasom, Potjana Sikhao and Prommart Koohakan\*

Faculty of Agricultural Technology, King Mongut's Institute of Technology Ladkrabang, Bangkok, Thailand.

Panisa Prasom, Potjana Sikhao and Prommart Koohakan (2017). In Vitro Study of Endophytic Bacteria Isolated from Tomato Plant against *Fusarium oxysporum*. International Journal of Agricultural Technology 13(7.1): 1217-1230.

In this study, 43 isolates of endophytic bacteria isolated from healthy tomato plants against *Fusarium oxysporum*, which causes Fusarium wilt disease of tomato, was studied. Initially effects of endophytic bacteria on the growth of tomato seedlings were tested. The results showed that most endophytic bacteria did not affect the growth of tomato seedlings. Characterization by gram staining revealed that most of them were gram-positive bacteria. Subsequently they were tested on the antagonistic activity against *Fusarium oxysporum* by dual culture technique. It was found that only seven isolates showed the ability to inhibit the pathogen more than 30 percent. The best isolates including SuRW02 SuRW01 and LbRW03 were highest inhibition percentage of 71.94, 68.33 and 68.19%, respectively. The potential isolates found in this study will be further study and develop for coating tomato seed which an alternative method to control Fusarium wilt disease in the future.

Keywords: endophytic bacteria, Fusarium oxysporum, Tomato

# Introduction

*Fusarium oxysporum* causes Fusarium wilt in tomato is a major pathogen affecting tomato production. The symptoms of this disease include wilting, chlorosis, and stunted seedling. As a result, the plants die or got lower yields (Hussain *et al.*, 2016). Agriculturists had many controlled measures by using several methods, including cultural technique and chemical application. Especially the use of chemicals has been widely used. Although the use of chemicals is effective in controlling the disease, this medthod is harmful to organisms and the environment. Therefore, safe strategies would be used in the management of this disease.

Biological control has been reported as a potential for the management of several disease. It consists of a variety of antagonistic microorganisms which have activity for controlling of various plant pathogens, including Fusarium

<sup>\*</sup>Corresponding Author: Prommart Koohakan; E-mail: prommart.ko@kmitl.ac.th

wilt pathogen (Larkin and Fravel., 1998). Among of that endophytic bacteria is one of the benefit microbial, which is a group of microorganisms that live in healthy plant tissue and did not negative effect on plant (Bacon and White, 2000; Hundley, 2005). Several studies of biological control by endophytic bacteria have shown that they were able to suppress the pathogen of bacterial wilt disease in tomato (Purnawati *et al.*, 2014). Also, inoculation with bacterial endophytes has been demonstrated to reduce disease symptoms caused by vascular wilt pathogens such as *Verticillium dahlia* and *Fusarium oxysporum* f. sp. *lycopersici* (Sacc.) (Nejad and Johnson., 2000). Nandhini *et al.* (2012) also reported that endophytic bacteria isolated from root, stem, leaves and fruits of healthy tomato plants can control *Fusarium oxysporum* f. sp. *lycopersici.* Therefore, this research presents the results of in vitro antagonistic activity of endophytic bacteria against *Fusarium oxysporum* and useful information for alternative biological control strategy in the future.

Objectives: Isolation and screening of endophytic bacteria that has potential to control *Fusarium oxysporum*. Selection potential isolate for further study as seed bio-coating of Fusarium wilt management in the future.

#### Materials and methods

# Isolation of Fusarium oxysporum and pathogenicity tests

*Fusarium oxysporum* was isolated from tomato plant exhibiting symptoms of Fusarium wilt by tissue transplanting technique. Identification was checked based on morphological characteristics.

Pathogenicity tests: Fungal pathogens were grown for 7 days on Potato dextose agar (PDA). Then the spore suspension at concentration of  $10^6$  spore / ml was prepared for this test. Tomato seedlings at 3 weeks of age were test by root dip technique (cut roots and dip into the spore suspension for 20 minutes), before transplanted into planting bag, and compared with dipping in sterile distilled water (control). Disease severity was evaluated at 2 week after inoculation by 0-3 scoring which modified from Marlatt *et al.* (1996); where 0 = healthy, 1 = temporary wilt, 2 = Permanent wilt and 3= plant die. Most violent isolate was selected to be used in next experiments. The experimental design was completely randomized design (CRD) with 5 replications.

#### Isolation and screening of beneficial endophytic bacteria for tomato plant

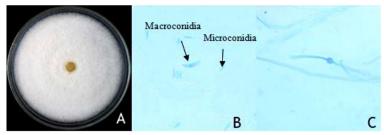
Isolation of endophytic bacteria was done from root, stem and leaves of healthy tomato plants. All parts of plants were surface disinfected by soaking in 70 % ethyl alcohol for 30 sec., washed with sterile distilled water, follow by soaking in 5% sodium hypochlorite for 2 min then washed again with sterile distilled water and dried on sterile filter paper. After surface disinfected, each sample was ground by sterile mortar and prepared the suspension to  $10^{-1}$ - $10^{-4}$ . Then each dilution of suspensions were cultured by pour plate technique on nutrient agar (NA) and incubated for 48 h at room temperature. Single colony occurred on the culture was move onto NA by streak plate technique to obtain pure colony. Morphological examination consists of colony shape, colony color, cell shape, and gram test by using 3% KOH and gram stain were also examined.

Screening for beneficial endophytic bacteria: All isolates obtained from healthy tomato plant was cultured in nutrient broth (NB) and incubated on rotary shaker for 48 hr. The culture was collected and centrifuged at 5000 rpm for 10 minutes to obtain the bacterial pellet and prepared to bacterial suspension which adjusted the concentration equal to 0.5 Mcfarland standard solution turbidity. A 10 ml of bacterial suspensions were added to the pots of tomato seedlings at 3 day of age grown in sterilized peat moss. The experimental design was completely randomized design (CRD) with 4 replications. After 7 days of inoculation with endophytic bacteria, the seedlings survived and the growth data was collected. The growth data including stem height, stem weight, root weight, total weight and number of leaves. Data were calculated for growth index of seedling vigor index (svi) as following formula:

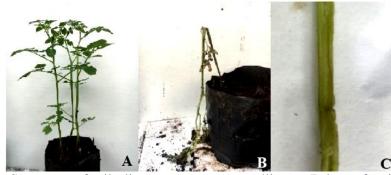
svi = Average germination percentage x Average weight per plants % svi =  $\frac{\text{svi of treatment}}{\text{svi of control}}$  X 100

# In vitro antagonistic activity of endophytic bacteria against Fusarium oxysporum

*Fusarium oxysporum* was cultured on PDA for 7 days. Endophytic bacteria were cultured on NA for 2 days. Antagonistic activity was evaluated by using dual culture technique on petridis containing PDA medium. The agar plug of pathogen was placed at the center of culture medium and endophytic bacteria were parallel streaked on the left and right sides of the pathogen at 2 cm. length from the edge of the plate then incubated at room temperature. Control plates were streaked with sterile distilled water. Evaluation of mycelial growth inhibition when pathogen grown full in control plate. The mycelial growth inhibition rate (IR) was calculated using the formula as follow: [(C2-C1)/C2 x 100 where C2: diameter of the pathogen colony on control plate. The experimental design was completely randomized design (CRD) with 4 replications.


# Statistical analysis

The results were subjected to the analysis of variance and means were separated according to the Duncan's multiple range test at P  $\leq 0.05$ .


# Results

### Pathogen and pathogenicity

*Fusarium oxysporum* isolated from tomato wilt disease plants were found the mycelium is delicate white to pink and produce charmadospore microconidia and macroconidia. Macroconidia have three-septate. (Figure1). In pathogenicity tests, the tomato showed symptom of permanent wilting to dead and browning of the vascular tissues after 7 days of inoculation (Figure2). The evaluation showed that the disease severity was 2.4 and the disease incidence was 80%.



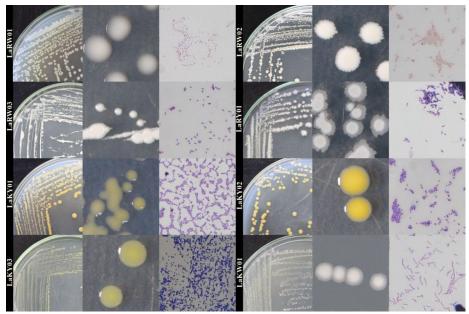
**Figure 1.** Morphology of *Fusarium oxysporum* (A = colony B = microconidia and macroconidia C = charmadospore)



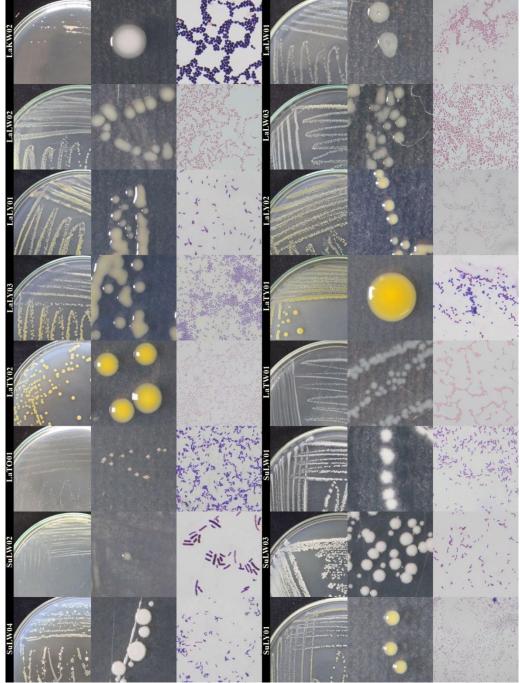
**Figure 2.** Symptom of wilt disease on tomato seedling at 7 days after inoculation (A =control B = inoculation with *Fusarium oxysporum* C = browning of the vascular tissues)

# Morphological characteristics and effects on growth and seedling vigor of endophytic bacteria

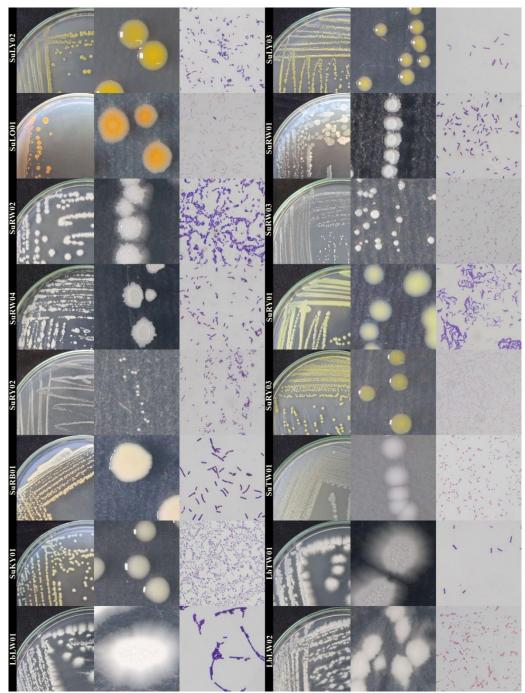
Fourty three isolates of endophytic bacteria isolated from each part of healthy tomato plants (root leaves and stem) was found to have a variety of morphological characteristics. Most of them were gram-positive bacteria, which was divers in colony characteristic as shown detail in Table 1 and Figure 3.


In addition, 43 isolates of endophytic bacteria were tested on tomato seedlings. The results showed that most endophytic bacteria did not affect the growth of tomato seedlings. Several endophytic bacteria were found that can be growth promoting and had seedling vigor more than 20 percentages when compare with control. Those isolates including LaRW01, LaKY03, LaLW02, LaLY02, LaTY01, LaTY02, LaTO01, SuLW01, SuLY03, SuRW02, SuRW04, SuRY01, SuRY01, SuRY01, SuRY01, SuRY01, LbTW01, LbLW02, and LbRW02. The details of data were shown in Table 2.

| Isolate |              | y         | 3%KO     | Gram    | shape  |          |              |
|---------|--------------|-----------|----------|---------|--------|----------|--------------|
| Isolate | color        | shape     | margin   | surface | H test | staining |              |
| LaRW01  | white        | circular  | entire   | mucoid  | +      | +        | coccus       |
| LaRW02  | cloudy white | circular  | erose    | smooth  | -      | -        | coccus       |
| LaRW03  | white        | irregular | undulate | smooth  | +      | +        | bacillus     |
| LaRY01  | white        | circular  | erose    | rough   | +      | +        | bacillus     |
| LaKY01  | yellow       | irregular | entire   | mucoid  | +      | +        | bacillus     |
| LaKY02  | yellow       | circular  | entire   | mucoid  | +      | +        | coccobacilli |
| LaKY03  | light yellow | circular  | entire   | mucoid  | +      | +        | coccobacilli |
| LaKW01  | white        | circular  | entire   | smooth  | +      | +        | coccobacilli |
| LaKW02  | white        | circular  | entire   | mucoid  | +      | +        | coccus       |
| LaLW01  | white        | circular  | entire   | rough   | -      | -        | coccus       |
| LaLW02  | white        | circular  | entire   | mucoid  | -      | -        | coccus       |
| LaLW03  | white        | circular  | entire   | mucoid  | -      | -        | bacillus     |
| LaLY01  | light yellow | circular  | entire   | mucoid  | +      | +        | bacillus     |
| LaLY02  | light yellow | circular  | entire   | mucoid  | +      | +        | coccus       |
| LaLY03  | light yellow | circular  | entire   | mucoid  | +      | +        | bacillus     |
| LaTY01  | yellow       | circular  | entire   | mucoid  | +      | +        | coccus       |
| LaTY02  | yellow       | circular  | entire   | mucoid  | -      | -        | coccus       |
| LaTW01  | white        | circular  | entire   | mucoid  | -      | -        | coccus       |
| LaTO01  | orange       | circular  | entire   | mucoid  | +      | +        | bacillus     |
| SuLW01  | cloudy white | circular  | erose    | smooth  | +      | +        | bacillus     |
| SuLW02  | light yellow | circular  | entire   | mucoid  | +      | +        | bacillus     |
| SuLW03  | cloudy white | circular  | entire   | mucoid  | +      | +        | bacillus     |
| SuLW04  | cloudy white | circular  | entire   | mucoid  | +      | +        | bacillus     |
| SuLY01  | light yellow | circular  | entire   | mucoid  | +      | +        | coccus       |
| SuLY02  | yellow       | circular  | entire   | mucoid  | +      | +        | bacillus     |


 Table 1. Characteristic of endophytic bacteria isolated from healty tomato plants.

| Isolate | Isolate colony |           |          | 3%KOH   | Gram | shape   |              |
|---------|----------------|-----------|----------|---------|------|---------|--------------|
|         | color          | shape     | margin   | surface | test | stainin |              |
|         |                |           |          |         |      | g       |              |
| SuLY03  | light yellow   | circular  | entire   | mucoid  | +    | +       | bacillus     |
| SuLO01  | orange         | circular  | entire   | smooth  | +    | +       | bacillus     |
| SuRW01  | cloudy white   | circular  | undulate | rough   | +    | +       | bacillus     |
| SuRW02  | cloudy white   | irregular | undulate | rough   | +    | +       | bacillus     |
| SuRW03  | cloudy white   | circular  | entire   | mucoid  | +    | +       | coccobacilli |
| SuRW04  | white          | irregular | undulate | rough   | +    | +       | bacillus     |
| SuRY01  | light yellow   | circular  | entire   | mucoid  | +    | +       | bacillus     |
| SuRY02  | light yellow   | circular  | entire   | smooth  | +    | +       | bacillus     |
| SuRY03  | light yellow   | circular  | entire   | mucoid  | -    | -       | coccus       |
| SuRB01  | egg            | circular  | undulate | smooth  | +    | +       | bacillus     |
| SuTW01  | white          | irregular | entire   | mucoid  | -    | -       | coccobacilli |
| SuKY01  | light yellow   | irregular | entire   | mucoid  | +    | +       | bacillus     |
| LbTW01  | cloudy white   | irregular | erose    | rough   | +    | +       | bacillus     |
| LbLW01  | cloudy white   | irregular | erose    | rough   | +    | +       | bacillus     |
| LbLW02  | cloudy white   | irregular | erose    | smooth  | -    | -       | coccus       |
| LbRW01  | cloudy white   | irregular | erose    | smooth  | +    | +       | bacillus     |
| LbRW02  | cloudy white   | irregular | erose    | rough   | +    | +       | bacillus     |
| LbRW03  | cloudy white   | circular  | entire   | smooth  | +    | +       | bacillus     |


 Table 1. Characteristic of endophytic bacteria isolated from healhy tomato plants (continue).



**Figure 3.** Morphology of endophytic bacteria isolated from healthy tomato plants (colony on NA (left), colony at 6.7X and gram staining (right)).



**Figure 3.** Morphology of endophytic bacteria isolated from healthy tomato plants (colony on NA (left), colony at 6.7X and gram staining (right)). (Continue).

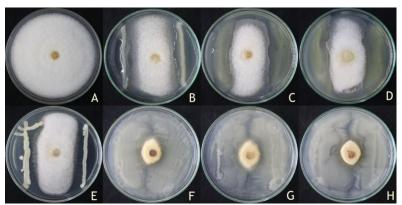


**Figure 3.** Morphology of endophytic bacteria isolated from healthy tomato plants (colony on NA (left), colony at 6.7X and gram staining (right)). (Continue)



**Figure 3.** Morphology of endophytic bacteria isolated from healthy tomato plants (colony on NA (left), colony at 6.7X and gram staining (right)). (Continue)

| Table 2. Effect of endophytic   | bacteria | isolated | from | healhy | tomato | plants | on |
|---------------------------------|----------|----------|------|--------|--------|--------|----|
| the growth of tomato seedlings. |          |          |      |        |        |        |    |


|          | Suvival        | Number    | Heigh of       | Fr        | esh weight ( |           |        |
|----------|----------------|-----------|----------------|-----------|--------------|-----------|--------|
| Isolates | of<br>seedling | of leaves | shoot<br>(cm.) | root      | shoot        | total     | % svi  |
| control  | $100a^{1/}$    | 2.00a     | 6.30ab         | 0.089cd   | 0.452f       | 0.541ghij | 100.00 |
| LaRW01   | 100a           | 1.95a     | 6.00 ab        | 0.136a    | 0.562bcd     | 0.698cbd  | 129.09 |
| LaRW02   | 95ab           | 1.90a     | 5.37ab         | 0.095c    | 0.470ef      | 0.565ghij | 99.16  |
| LaRW03   | 95ab           | 2.00a     | 6.50ab         | 0.119ab   | 0.436 f      | 0.555ghij | 97.41  |
| LaRY01   | 100a           | 1.90a     | 5.50ab         | 0.073def  | 0.466ef      | 0.537ghij | 99.30  |
| LaKY01   | 100a           | 1.95a     | 5.50ab         | 0.073def  | 0.518de      | 0.591fgh  | 109.23 |
| LaKY02   | 100a           | 1.90a     | 5.37ab         | 0.071def  | 0.437f       | 0.508j    | 93.99  |
| LaKY03   | 100a           | 2.00a     | 5.62ab         | 0.086cdef | 0.561bcd     | 0.647def  | 119.63 |
| LaKW01   | 100a           | 1.90a     | 6.00ab         | 0.095c    | 0.465ef      | 0.560ghij | 103.46 |
| LaKW02   | 85c            | 1.90a     | 5.87ab         | 0.067f    | 0.437f       | 0.505j    | 79.30  |
| LaLW01   | 100a           | 1.95a     | 5.87ab         | 0.121ab   | 0.443f       | 0.565ghij | 104.38 |
| LaLW02   | 100a           | 1.95a     | 5.50ab         | 0.120ab   | 0.562bcd     | 0.682cd   | 126.09 |
| LaLW03   | 100a           | 1.90a     | 6.12ab         | 0.124ab   | 0.4675ef     | 0.591fgh  | 109.23 |
| LaLY01   | 100a           | 1.90a     | 5.75ab         | 0.086cdef | 0.436f       | 0.522ij   | 96.53  |
| LaLY02   | 100a           | 2.00a     | 5.50ab         | 0.126ab   | 0.561bcd     | 0.687cd   | 127.02 |
| LaLY03   | 100a           | 1.90a     | 5.25ab         | 0.095c    | 0.4385f      | 0.533hji  | 98.61  |
| LaTY01   | 100a           | 2.00a     | 5.62ab         | 0.116b    | 0.562bcd     | 0.678cd   | 125.40 |
| LaTY02   | 100a           | 1.95a     | 5.87ab         | 0.118ab   | 0.578bc      | 0.696cbd  | 128.63 |
| LaTW01   | 100a           | 1.95a     | 6.12ab         | 0.069ef   | 0.428f       | 0.497j    | 91.91  |
| LaTO01   | 100a           | 2.00a     | 6.00ab         | 0.115b    | 0.632a       | 0.747ab   | 138.10 |
| SuLW01   | 100a           | 1.95a     | 6.37 ab        | 0.116b    | 0.536cd      | 0.652de   | 120.55 |
| SuLW02   | 100a           | 1.95a     | 5.87 ab        | 0.071def  | 0.441f       | 0.512j    | 94.68  |
| SuLW03   | 100a           | 2.00a     | 5.75 ab        | 0.121ab   | 0.476ef      | 0.597efg  | 110.39 |
| SuLW04   | 100a           | 2.00a     | 5.75 ab        | 0.0675f   | 0.477ef      | 0.545ghij | 100.69 |

|          | Suvival        | Number    | Heigh of | Fresh weight |          |            |        |
|----------|----------------|-----------|----------|--------------|----------|------------|--------|
| Isolates | of<br>seedling | of leaves | shoot    | root         | shoot    | total      | % svi  |
| SuLY01   | 100a           | 1.85a     | 6.00ab   | 0.079 cdef   | 0.4725ef | 0.551 ghij | 101.84 |
| SuLY02   | 100a           | 1.95a     | 6.00ab   | 0.086cdef    | 0.442f   | 0.528ij    | 97.69  |
| SuLY03   | 100a           | 1.90a     | 6.00ab   | 0.123ab      | 0.606ab  | 0.728abc   | 134.64 |
| SuLO01   | 100a           | 2.00a     | 6.37ab   | 0.0905c      | 0.466ef  | 0.561 ghij | 103.69 |
| SuRW01   | 95ab           | 2.00a     | 5.75ab   | 0.068ef      | 0.442f   | 0.511j     | 89.73  |
| SuRW02   | 100a           | 1.90a     | 5.37ab   | 0.128ab      | 0.518de  | 0.646def   | 119.39 |
| SuRW03   | 95ab           | 2.00a     | 6.37ab   | 0.0685ef     | 0.437cd  | 0.506j     | 88.85  |
| SuRW04   | 100a           | 2.00a     | 6.00ab   | 0.115b       | 0.538cd  | 0.653de    | 120.78 |
| SuRY01   | 100a           | 1.95a     | 6.25ab   | 0.126ab      | 0.630a   | 0.756a     | 139.72 |
| SuRY02   | 100a           | 2.00a     | 6.87a    | 0.086cdef    | 0.605ab  | 0.691cbd   | 127.71 |
| SuRY03   | 100a           | 2.00a     | 6.62ab   | 0.118ab      | 0.466ef  | 0.583ghi   | 107.85 |
| SuRB01   | 100a           | 1.95a     | 6.12ab   | 0.116b       | 0.537cd  | 0.653de    | 120.78 |
| SuTW01   | 100a           | 1.90a     | 6.12ab   | 0.128ab      | 0.577bc  | 0.705abcd  | 130.24 |
| SuKY01   | 100a           | 2.00a     | 6.62ab   | 0.118ab      | 0.537cd  | 0.655de    | 121.01 |
| LbTW01   | 100a           | 1.90a     | 5.75ab   | 0.069ef      | 0.441f   | 0.510j     | 94.22  |
| LbLW01   | 90bc           | 1.95a     | 5.75ab   | 0.086cde     | 0.475ef  | 0.562 ghij | 93.53  |
| LbLW02   | 100a           | 1.90a     | 5.75ab   | 0.126ab      | 0.537cd  | 0.663d     | 122.63 |
| LbRW01   | 100a           | 1.85a     | 5.7ab    | 0.071def     | 0.436f   | 0.507j     | 93.76  |
| LbRW02   | 100a           | 1.95a     | 5.87ab   | 0.086cdef    | 0.576bc  | 0.662d     | 122.40 |
| LbRW03   | 100a           | 1.95a     | 5.87ab   | 0.065ef      | 0.443f   | 0.512j     | 94.68  |

**Table 2.** Effect of endophytic bacteria isolated from healty tomato plants on the growth of tomato seedlings (Continue).

### Effect of endophytic bacteria against Fusarium oxysporum

The result of antagonistic activity of 43 isolates endophytic bacteria against *Fusarium oxysporum* were found that 25 isolates were significantly different compared with control. Among of these, only seven isolates showed the ability to inhibit the pathogen growth more than 30 percent, including LaLW03, LaLY01, SuLW03, LaRY01, SuRW01, SuRW02, and LbRW03 (Figuer 4). The best isolates were SuRW02 SuRW01 and LbRW03, which had the highest inhibition percentage of 71.94, 68.33 and 68.19%, respectively (Table 3).



**Figure 4.** Dual-culture of seven isolates of endophytic bacteria that showed ability to inhibit the pathogen growth more than 30 percent (A= control, B= LaRY01, C=LaLW03, D=LaLY01, E= SuLW03, F= SuRW01, G= SuRW02, H= LbRW03)

| Table 3. Antagonistic trait of 43 isolates of endophytic bacteria isolated | from |
|----------------------------------------------------------------------------|------|
| healthy tomato plants to suppress the growth of Fusarium oxyspe            | rum. |

| Isolates | Inhibitory agiast Fus    | sarium oxysporum    |
|----------|--------------------------|---------------------|
| Isolates | Diameter of colony (cm.) | % Growth inhibition |
| control  | 9.00                     | $0.00k^{1/2}$       |
| LaRW01   | 7.00                     | 22.22 defg          |
| LaRW02   | 6.95                     | 22.78defg           |
| LaRW03   | 6.42                     | 28.61cd             |
| LaRY01   | 5.71                     | 36.53b              |
| LaKY01   | 8.77                     | 2.50jk              |
| LaKY02   | 8.95                     | 0.00k               |
| LaKY03   | 8.93                     | 0.00k               |
| LaKW01   | 8.75                     | 2.72jk              |
| LaKW02   | 8.23                     | 8.47ij              |
| LaLW01   | 7.62                     | 15.28ghi            |
| LaLW02   | 8.03                     | 10.69hi             |
| LaLW03   | 6.26                     | 30.42bc             |
| LaLY01   | 6.25                     | 30.47bc             |
| LaLY02   | 7.53                     | 16.25fgh            |
| LaLY03   | 7.50                     | 16.67fgh            |
| LaTY01   | 8.92                     | 0.00k               |
| LaTY02   | 8.87                     | 0.00k               |
| LaTW01   | 6.56                     | 27.08cde            |
| LaTO01   | 7.35                     | 18.33fg             |
| SuLW01   | 8.97                     | 0.00k               |
| SuLW02   | 7.15                     | 20.56 efg           |

| Isolatos | Inhibitory agiast Fus    | sarium oxysporum    |
|----------|--------------------------|---------------------|
| Isolates | Diameter of colony (cm.) | % Growth inhibition |
| SuLW03   | 6.16                     | 31.53bc             |
| SuLW04   | 8.92                     | 0.00k               |
| SuLY01   | 8.87                     | 0.00k               |
| SuLY02   | 7.10                     | 21.06efg            |
| SuLY03   | 6.90                     | 23.33def            |
| SuLO01   | 9.00                     | 0.00k               |
| SuRW01   | 2.85                     | 68.33a              |
| SuRW02   | 2.52                     | 71.94a              |
| SuRW03   | 8.08                     | 10.14hi             |
| SuRW04   | 9.00                     | 0.00k               |
| SuRY01   | 7.00                     | 22.22 defg          |
| SuRY02   | 9.00                     | 0.00k               |
| SuRY03   | 8.76                     | 0.00k               |
| SuRB01   | 7.57                     | 15.83fgh            |
| SuTW01   | 6.98                     | 22.36 defg          |
| SuKY01   | 9.00                     | 0.00k               |
| LbTW01   | 7.12                     | 20.83 efg           |
| LbLW01   | 7.28                     | 19.028fg            |
| LbLW02   | 6.97                     | 22.50 defg          |
| LbRW01   | 7.12                     | 20.83 efg           |
| LbRW02   | 7.15                     | 20.56 efg           |
| LbRW03   | 2.86                     | 68.19a              |

**Table 3.** Antagonistic trait of 43 isolates of endophytic bacteria isolated from healthy tomato plants to suppress the growth of *Fusarium oxysporum*. (Continue)

#### Disscustion

The morphological characteristic of *Fusarium* sp. isolated in this research was similar to *Fusarium oxysporum* according to Nirmaladevi *et al.* (2016) reported that the mycelia of *Fusarium oxysporum* isolates appeared delicate, white to pink, often with purple tinge. The fungus produced macroconidia, microconidia and chlamydospores. Macroconidia have 3-5 septate. Microconidia usually has non-septate or single septate. Chlamydospores, both smooth and rough walled, were abundant and formed terminally or on an intercalary basis. They are generally solitary, but occasionally form in pairs or chains.

Endophytic bacteria are bacteria that live in plant tissues. This bacterium is not harmful to plants and some species can help promote plant growth. (Bacon and White, 2000; Hundley, 2005). The results in this research showed that most endophytic bacteria did not harm tomato seedlings, also

promote the growth and seedlings vigor. According to Khan *et al.* (2014), Tomato plants inoculated with endophytic bacteria showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights). In addition, this study has shown that endophytic bacteria can be inhibiting the growth of *Fusarium oxysporum*. Several researches have reported the use of endophytic bacteria for controlling many pathogens such as *Sclerotium rolfsii*, *Colletotrichum capsici*, *Pythium* sp., *Verticillium dahlia*, include *Fusarium oxysporum* causes Fusarium wilt in tomatoes. (Nejad and Johnson. 2000; Amaresan *et al.*, 2012 and Nandhini *et al.*, 2012).

This research showed that endophytic bacteria isolated from healthy tomato plants tissue are capable of promoting the growth of tomato seedlings and inhibit the growth of Fusarium oxysporum. The results of this study are the guideline for further study on the control of Fusarium sp. by biological method.

#### Acknowledgement

This research was supported by Geduate Research Fund from Faculty of Agricultural Technology, King Mongut's Institute of Technology Ladkrabang, Bangkok, Thailand.

#### References

- Amaresan, N., Jayakumar, V., Kumar, K., and Thajuddin, N. (2012). Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (*Lycopersicon esculentum*) and chilli (*Capsicum annuum*) seedling growth. Annals of microbiology, 62(2), 805-810.
- Bacon, C.W. and White, J.F. (2000). Microbial endophytes, Marcel Dekker Inc., New York, USA.
- Hussain, I., Alam, S. S., Khan, I., Shah, B., Naeem, A., Khan, N., and Shah, S. R. A. (2016). Study on the biological control of fusarium wilt of tomato. Journal of Entomology and Zoology Studies 4(2): 525-528.
- Hundley NJ. (2005). Structure Elucidation of bioactive compounds isolated from endophytes of alstonia scholaris and acmena graveolens. MS thesis. Univ. of Brigham Young.
- Khan, A. L., Waqas, M., Kang, S. M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., and Lee, I. J. (2014). Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 52(8), 689-695.
- Larkin, R. P., and Fravel, D. R. (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant disease, 82(9): 1022-1028.
- Marlatt, M.L., Correll, J.C., Kaufmann, P. and Cooper, P.E. (1996). Two genetically distinct populations of *Fusarium oxysporum* f. sp. *lycopersici* race3 in the United States. Plant Disease .1342-1336:(12) 80.
- Nandhini, S., Sendhilvel, V., and Babu, S. (2012). Endophytic bacteria from tomato and their efficacy against *Fusarium oxysporum* f. sp. *lycopersici*, the wilt pathogen. Journal of Biopesticides 5(2): 178.
- Nejad, P., & Johnson, P. A. (2000). Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological control, 18(3): 208-215.

- Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., and Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of *Fusarium oxysporum* f. sp. *lycopersici*. Scientific reports, 6: 21367.
- Purnawati1, A., Sastrahidayat, I. R., Latief Abadi, A., and Hadiastono, T. (2014). Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. Journal of tropical life science. 4(1):33-36.

(Received: 22 October 2017; accepted: 25 November 2017)